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On fine sediment transport by a flood surge
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We develop asymptotic solutions for passive suspended sediment transport under a
flood surge on a uniform slope. Our solutions provide predictions of the net scour un-
der a surge, and simple estimates of the conditions under which it may ‘bulk up’ into a
mud or debris flow, as well as illustrating their sensitivity to sediment entrainment
rates.

1. Introduction and motivation
When water confined behind a barrier, for example in an artificial reservoir or a

crater lake, is suddenly released, a large and swift flood surge propagates downstream.
Depending on the terrain over which such a surge flows, it may be able to mobilize
large quantities of sediment: understanding how this occurs is important both in order
to predict how such a surge will reshape the slope or channel bed beneath it and to de-
termine how it should be treated for the purposes of hazard assessment and prevention.

A surge which initially consists of clear water may mobilize sediment either by
entraining it into suspension or as a highly concentrated layer of mobile particles
(bedload). The latter mechanism is dominant for coarse sediment, and for a sufficiently
large surge over a non-cohesive substrate the fluidized layer may even become
comparable in thickness to the flow itself (Fraccarollo & Capart 2002). Finer, more
cohesive sediment is mainly transported as suspended load, and it is this which we
investigate here. We note that the two modes of transport are not exclusive, and
for example a debris flow may have a muddy body and a fluidized granular ‘snout’
(Ancey 2001). The entrainment process is limited by the fact that, as volumetric
concentrations reach around 10–20 %, turbulence is damped, the rheology changes,
and the surge starts to ‘bulk up’ into a rapid muddy flow (see e.g. Huang & Garcia
1998). Such muddy flows propagate more slowly than surges of clear water but,
because of their greater density and ability to transport large solid objects, they may
also be extremely destructive (see e.g. Ancey 2001), and for hazard assessment it is
useful to predict when and where they can occur. The flood surge model we develop
here is valid only before this rheological transition occurs, but it allows us to draw
some conclusions about the circumstances under which the transition is possible.

We will first (§ 2) discuss the formulation and validity of our model; we will then
(§ 3) describe some typical results, including erosion patterns and some necessary
conditions for a surge to bulk up. We make some concluding remarks in § 4.

2. Description of the model
We consider the equations for shallow flow on a bed of angle θ from the horizontal,

∂ĥ

∂t̂
+

∂(ūĥ)

∂x̂
= 0,

∂ū

∂t̂
+ ū

∂ū

∂x̂
+ ĝ cos θ

∂ĥ

∂x̂
= ĝ sin θ − cDū2

ĥ
. (2.1)
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Here ĥ denotes fluid depth normal to the bed and ū denotes vertically averaged flow
velocity parallel to the bed. (Throughout, bars and carets identify physical variables,
while rescaled dimensionless quantities are unadorned.) We have assumed a quadratic
drag law suitable for turbulent flows, so the basal shear stress is given by τ̂ = cDρ̂ū2,
where ρ̂ is the density of water and cD is a small drag coefficient. We will assume
that the effect of erosion on the bed is negligible: we consider the validity of this
assumption below.

Weir (1983) showed that when a finite mass of water of cross-sectional area Â is
released on a uniform slope, the flow adjusts after a characteristic time t̂adj to a state
in which the dominant dynamical balance is between the alongslope gravitational
acceleration and the drag term,

cDū2 = (ĝ sin θ)ĥ. (2.2)

The adjustment time is given by

t̂adj ∼ Â1/4c
1/2
D

(sin θ)5/4ĝ1/2
. (2.3)

We now define the non-dimensional variables

x = x̂/X̂, t = t̂/T̂ , u = ūT̂ /X̂, h = ĥ/Ĥ , (2.4)

where the capitals denote characteristic scales which are to be determined. The
continuity and (reduced) momentum equations can now be written as

∂h

∂t
+

∂(uh)

∂x
= 0, u2 =

[
Ĥ T̂ 2

X̂2

ĝ sin θ

cD

]
h, (2.5)

while the volume condition is given by∫ xf (t)

0

h(x, t) dx =

[
Â

X̂Ĥ

]
, (2.6)

where x̂ = x̂f (t̂) is the position of the flow front.
Requiring that the collections of terms in square brackets in (2.5) and (2.6) should

each be equal to 1, and substituting for u(h) in the continuity equation, we obtain the
kinematic-wave equation

∂h

∂t
+

3

2
h1/2 ∂h

∂x
= 0 (2.7)

and thus the degenerate kinematic-wave solution

u(x, t) =
2

3

x

t
, h(x, t) =

4

9

x2

t2
in 0 � x � kf t2/3, where kf =

3

22/3
, (2.8)

and where all characteristics radiate from (0, 0). Hunt (1982) derived this solution
and demonstrated that it agreed well with experiments carried out in a laboratory
flume. Unlike the simple-wave solution for a dam-break flow on a horizontal surface,
the solution does not lose validity as the body of the flow is invaded by a nose region
in which a different dynamical balance holds (Hogg & Pritchard 2004): rather, the
relative length of this nose region remains small as the current lengthens (Hunt 1984).

We now consider a transport equation for the depth-averaged volumetric concen-
tration of suspended sediment c̄ = Ĉc(x, t), where Ĉ is a characteristic scale as before.
Assuming that the velocity of the flow is approximately uniform in the vertical, we may
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write an advection–erosion–deposition equation (cf. Pritchard & Hogg 2002) which in
non-dimensional form becomes

∂c

∂t
+ u

∂c

∂x
=

[
T̂ ûe

ĈĤ

]
qe(u)

h
−

[
T̂ ŵs

Ĥ

]
c

h
. (2.9)

Here ŵs is the effective settling velocity of the particles and q̂e = ûeqe(u) is a volumetric
sediment entrainment rate. Assuming a given vertical distribution of sediment, the
settling velocity ŵs may be weighted to reflect the higher concentrations near the
bed; for a well-mixed suspension it reduces to the settling velocity for an individual
particle. The entrainment rate parameter ûe has the dimensions of velocity, and in
many models it is taken to be proportional to ŵs .

2.1. Non-dimensionalization and conditions for validity of the model

Requiring that the terms in square brackets be set equal to 1 in equations (2.5), (2.6)
and (2.9) now specifies the scaling quantities completely. We obtain

Ĉ =
ûe

ŵs

, X̂ =

[
Â3ĝ sin θ

cDŵ2
s

]1/5

, Ĥ =

[
Â2ŵ2

s cD

ĝ sin θ

]1/5

, T̂ =

[
Â2cD

ŵ3
s ĝ sin θ

]1/5

. (2.10)

We expect Ĉ, T̂ and X̂ to give rough estimates for, respectively, the typical
concentrations attained under the flow, the timescale over which suspended sediment
concentrations change, and the distance the flow travels over this timescale: in the
next section we will compare these estimates with the analytical solution.

It is meaningful to consider sediment transport under the kinematic-wave solution
if T̂ � t̂adj, in other words if

[
Â2cD

ŵ3
s ĝ sin θ

]1/5

� Â1/4c
1/2
D

(sin θ)5/4ĝ1/2
⇔ ŵs � ĝ1/2Â1/4(sin θ)7/4

c
1/2
D

. (2.11)

With typical values of sin θ = 0.01, cD ≈ 0.003 and ĝ = 10 m s−2, this condition becomes
ŵs � 0.02 m1/2 s−1Â1/4, which is readily satisfied for large surges and reasonably fine
sediment; on steeper slopes it may be valid even for quite coarse particles.

Finally, we may calculate the net erosion or deposition under a surge. This may be
obtained by sediment budgeting: given the volumetric packing density of particles in
the bed, φ̂, we obtain the net deposit depth at a point as η̂(x̂) ≡ D̂η(x), where

D̂ =
ûeT̂

φ̂
, η(x) =

∫ ∞

(x/kf )3/2

[c(x, t) − qe(u(x, t))] dt. (2.12)

We may neglect the effects of erosion on the bed if |dη̂/dx̂| =(D̂/X̂)|dη/dx| � tan θ .

The condition (D̂/X̂) � tan θ is equivalent to

ŵs � ĝ1/2Â1/4(sin θ)1/2(tan θ)5/4φ̂5/4

c
1/2
D Ĉ5/4

. (2.13)

Since Ĉ < φ̂, the condition (2.13) will be satisfied whenever T̂ � t̂adj, and bed level
changes may in general be neglected if |dη/dx| remains of order 1.
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3. Results for sediment transport
3.1. Construction of solutions for suspended sediment

We may develop solutions to equation (2.9) by writing the flow field (2.8) in Lagrangian
form, obtaining Lagrangian fluid element positions xL(t), velocities uL(t) and depths
hL(t):

xL(t; k) = kt2/3, uL(t; k) =
2k

3t1/3
, hL(t; k) =

4k2

9t2/3
, (3.1)

where k > 0 is a labelling parameter. The shock front xf (t) is a particular case of xL(t)
(corresponding to k = kf ) since this shock must follow the frontmost fluid element.

In Lagrangian form, the concentration equation (2.9) becomes

dcL

dt
(t; k) =

9t2/3

4k2
[qe(uL(t; k)) − cL(t; k)]. (3.2)

Imposing the initial condition cL(0; k) = c0(k), we obtain the solution

cL(t; k) = exp

[
−27t5/3

20k2

]{
c0(k) +

∫ t

0

exp

[
27τ 5/3

20k2

]
9τ 2/3

4k2
qe(uL(τ ; k)) dτ

}
. (3.3)

Since we are concerned with surges caused by the release of fluid from an initially
quiescent source, we assume throughout that the initial amount of sediment in
suspension is negligible, c0(k) = 0.

At this stage we need to specify the form of the sediment entrainment rate qe(u).
There is no universally accepted model for this, so we will consider two common
choices to test how sensitive our predictions are to this component of the model. The
entrainment rate for both cohesive and non-cohesive sediment is often modelled as
some power of the excess shear stress above a critical value τ̂c (Dyer & Soulsby 1988;
Teisson et al. 1993), so

q̂e = ûe

(
|τ̂ | − τ̂c

τ̂0

)m/2

Θ(|τ̂ | − τ̂c). (3.4)

Here τ̂0 is a reference shear stress, m > 0, and Θ(y) is the Heaviside step function.
Employing a quadratic drag law and defining τ̂0 = cDρ̂X̂2/T̂ 2, equation (3.4) has the
non-dimensional form

qe(u) =
(
u2 − u2

c

)m/2
Θ

(
u2 − u2

c

)
. (3.5)

Typical values of m are m =2 for cohesive sediment and m =3 for non-cohesive
sediment, although a very wide range of values have been used (Garcia & Parker
1991).

An alternative erosion model was obtained by Garcia & Parker (1991) using data
from open-channel flow experiments with non-cohesive sediment. In this model, the
erosion rate q̂e is written in terms of a dimensionless friction velocity Zu; using the
Chezy drag law, it becomes

q̂e = ŵs

0.3βZ5
u

0.3 + βZ5
u

, where Zu = c
1/2
D

ū

ŵs

(
(ĝ′

s)
1/2D̂3/2

s

ν̂

)3/5

. (3.6)

Here β =1.3×10−7 is an empirically fitted constant, D̂s is the sediment grain diameter,
ν̂ is the kinematic viscosity of water and ĝ′

s = ĝ(ρ̂s − ρ̂)/ρ̂ is the reduced gravity of the
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sedimentary particles. Defining ûe = 0.3ŵs , the dimensionless erosion rate becomes

qe =
u5

α + u5
, where α =

0.3

βc
5/2
D

(
ŵsT̂

X̂

)5(
ν̂

D̂
3/2
s (ĝ′

s)
1/2

)3

. (3.7)

Using Stokes’ law to express ŵs in terms of D̂s , we may write α as

α =
0.3

184β

1

c
1/2
D (sin θ)2

D̂7/2
s (ĝ′

s)
5/2

Âĝ2ν̂
. (3.8)

Taking representative values ν̂ = 10−6 m2 s−1, cD = 0.003 and ĝ′
s = 16 m s−2, we obtain

α ≈ 4 × 109 m−3/2D̂7/2
s Â−1(sin θ)−2. For sediment of size D̂s � 10−3 m and for any

reasonably large flow event (A � 103 m3) and steep slope (sin θ � 0.01), α will be of
order unity or less despite the large dimensional prefactor, but it varies strongly with
the size of the sediment and of the surge.

3.1.1. Some properties of the concentration field

For the problem described here to be well-posed, it is important that a finite initial
concentration can be imposed despite the singularities in u and h as t → 0. We require
the asymptotic behaviour of qe(u) as u → ∞. In this limit, both (3.5) and (3.7) reduce
to qe ∼ um for some m, and so (3.2) becomes

dcL

dt
∼ um

L

hL

∼ t (2−m)/3 as t → 0. (3.9)

Equation (3.9) may be integrated with initial condition cL(0) = 0 if (2 − m)/3 > −1,
in other words if m < 5. This condition is satisfied for all physically realistic erosion
models, and so we may regard the problem as well-posed in this respect.

A useful feature of the solution (3.3) is that we can obtain a monotonicity constraint
on the concentration field c(x, t). The concentration will increase monotonically
towards the front of the flow if ∂cL/∂k > 0, and we can write this derivative as

∂cL

∂k
=

9

4k2

∫ t

0

exp

[
27

20

(
τ 5/3 − t5/3

)
k2

]
τ 2/3

{
−2

k
qe(uL(τ ; k))

+
27

10

(
t5/3 − τ 5/3

)
k3

qe(uL(τ ; k)) +
2

3τ 1/3

dqe

du
(uL(τ ; k))

}
dτ. (3.10)

If the term in curly brackets is positive for all τ ∈ (0, t) then ∂cL/∂k > 0. This
condition will in turn be met if

2qe(uL) �
2k

3τ 1/3

dqe

du
(uL) = uL

dqe

du
(uL) for

2k

3t1/3
< uL < ∞. (3.11)

The condition (3.11) represents a competition, as k increases towards the front,
between the effects of higher velocities (and thus more rapid erosion) and greater
depths (and thus slower increase of c). For erosion rates of the form (3.5), enhanced
erosion wins when m � 2, and (3.11) is satisfied for all positive k and t . However,
(3.11) is not satisfied for erosion rates of the form (3.7), since in this case qe ∼ 1 as
u → ∞. We will see that this affects how we interpret the conditions for bulking up
under the two models.

3.2. Examples of solutions

We will now present some results for sediment transport under the two erosion models
described above. First (§ 3.2.1) we will discuss the suspended sediment concentration
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Figure 1. Rescaled volumetric concentration c(x; t) under the simple erosion model (3.5) for
(a) m= 2 and ue = 0; (b) m= 3 and uc = 1. Solid lines represent ‘snapshots’ of concentration
field at t = 0.25, 0.5, 1, 2, 5 and 10; dashed lines represent cf (t); dotted lines represent the
equilibrium concentration ceq(t) at the flow front.
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Figure 2. Rescaled volumetric concentration c(x; t) under the erosion model (3.7) for (a) α = 1
and (b) α = 0.001. Solid lines represent ‘snapshots’ of concentration field at t = 0.25, 0.5, 1, 2,
5 and 10; dashed lines represent c(xf , t); dotted lines represent the equilibrium concentration
ceq(t) at the flow front.

field c(x, t); we will then use this to obtain some simple conditions under which
bulking up may be possible (§ 3.2.2); finally we will consider the net scour and
deposition under the surge (§ 3.2.3).

3.2.1. Concentration field c(x, t)

Figure 1 shows typical solutions for c(x, t) and cf (t) ≡ cL(t; kf ) under the simple
erosion model (3.5), for various values of m and uc. The most prominent feature is
that cf (t) increases to a maximum value and then gradually decays. This variation
in cf (t) is driven by the rapidly declining ‘equilibrium’ concentration ceq = qe(uf ).
At early times the surge is underloaded with sediment (i.e. c is lower than ceq) and
so the concentrations increase rapidly. As the surge thins and ceq falls, the frontal
concentration overtakes ceq: the flow is now overloaded compared to ceq(t) and so the
concentrations decline. For m =2 and uc = 0 (figure 1a) the decline in ceq is sufficiently
gradual for cf to catch up with ceq, but for m = 3 and uc = 1 (figure 1b) the decline of
ceq is too fast and the front remains substantially overloaded with sediment for some
time.

Figure 2 illustrates the solutions for c(x, t) under the erosion model (3.7). The most
obvious difference from figure 1 is that at early stages the concentration is highest
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Figure 3. (a) Maximum concentration cmax attained at the flow front, for m= 3 (solid lines)
and m=2 (dashed lines) in the simple erosion model (3.5). (b) The corresponding positions x∗
at which the concentration c∗ is first attained, for m= 3 (solid lines) and m= 2 (dashed lines)
with uc = 0, 0.5, 1, 1.5 and 2.

not at the flow front but within the flow. The local maximum gradually catches up
with the flow front, and it appears that the maximum concentration attained at the
flow front is still the highest ever attained anywhere in the flow. However, if any
point in the surge body ever becomes sufficiently turbid for it to behave locally like
a laminar muddy flow, this may strongly affect the subsequent behaviour of the flow.
It provides, for example, one mechanism by which a single surge may break into
successive muddy surges, as is often noticed in the body of a debris flow (Ancey
2001), or by which a relatively clear flow front may outrun a muddy tail, so that the
surge divides into two events with quite different properties. While our model is not
capable of describing such transitions, this possibility may merit further study.

Considering figure 2, the effect of taking a smaller value of α is that the erosion
rate remains close to its maximum value of qe = 1 for longer. Consequently, sediment
concentrations increase more rapidly in the early stages of the flow and are sustained
for longer in the late stages of the flow, and the maximum concentration attained is
closer to its theoretical maximum c = 1 (ĉ = 0.3). As α approaches zero, the erosion
rate becomes nearly uniform: qe ≈ 1 for almost the entire history of the flow. The
limiting case occurs when α = 0 and so qe = 1; the solution (3.3) can then be evaluated
exactly as

cL(t, k) = 1 − exp
(
−27t5/3/(20k2)

)
, (3.12)

so the maximum concentration cL = 1 is approached over a timescale tm ∼ k6/5. (We
note that for α � 1 the model therefore becomes inconsistent very close to the tail of
the surge, where k � 1 and so T̂ k6/5 � t̂adj.)

3.2.2. Maximum concentrations and conditions for the onset of bulking up

When determining whether the surge will undergo a transition to a muddy flow,
the crucial feature of the concentration field is the maximum concentration at a given
time. As we have seen, for the simple erosion model (3.5), this maximum is always at
the flow front, while for the Garcia–Parker model (3.7), it may occur in the interior
of the flow.

We consider first the simple erosion model (3.5). Figure 3(a) illustrates how the
maximum value of concentration cmax varies with the erosion rate parameters, while
figure 3(b) shows the minimum distance from source x∗ at which a given concentration
c∗ is first attained. Increasing the erosion threshold uc reduces cmax, as erosion is
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Figure 4. (a) Maximum concentration cmax attained at any point in the flow at any time
using the erosion model (3.7); (b) the first point x∗ at which the concentration c∗ is attained,
for α = 0.001, 0.01, 0.1, 1 and 10.

progressively restricted to a region close to the flow source. Higher values of m cause
the concentration field to peak earlier and at higher values as erosion in the early,
high-velocity stage of the flow is enhanced; thus cmax is higher for m =3 than for
m =2.

The simplest criterion we can employ for the onset of bulking up is that the
maximum concentration reaches some critical value c̄ = ĉ∗ at some point during the
surge, where (as noted in § 1) we may take ĉ∗ to be around 10 %. This criterion
provides two necessary conditions for bulking up to occur: first, that the maximum
concentration cmax ever attained under the surge is greater than c∗; and second, that
the length of the slope on which the surge occurs is sufficient for this concentration
to be reached during the lifetime of the surge.

Using figure 3(a) or 4(a), we can first determine whether c = c∗ can be attained at
all for a given surge. We can then use figure 3(b) or 4(b) to determine the minimum
distance from source x∗(c∗; m, uc) at which this concentration is attained; a slope
length of at least x∗X̂ is then required for the flow to bulk up.

Figure 3(a) indicates that for low values of uc, corresponding to large surges,
the maximum concentrations attained under the surge are no greater than around
1.6Ĉ = 1.6ûe/ŵs . Consequently, if the ratio ûe/ŵs is less than around 0.06, this erosion
model predicts that the surge cannot bulk up through sediment entrainment.

If Ĉ is large enough for bulking up to occur, it is still necessary for the slope to
be long enough for a critical concentration ĉ∗ to be attained. If c∗ is of order 1, then
figure 3(b) indicates that (at least for low values of uc) the required dimensionless
distance x∗ is of order 1. However, if the ratio ûe/ŵs is large, so that turbidity starts to
affect the flow for very small values of c∗, then x∗ is correspondingly reduced; if c∗ is
less than about 0.1, then x∗ is also less than 0.1 for both values of m, and bulking up
may occur on a rather shorter slope than the purely dimensional estimate X̂ would
suggest.

Figures 4(a) and 4(b) show the corresponding results for the erosion model (3.7).
The major difference is that x∗(c∗; α) is generally less than the distance the flow front
has travelled at this point, since c∗ may be attained first in the interior of the flow.
In general, the pattern of the results is rather similar. For small surges (α � 5), it
is unlikely that the surge can bulk up at all. For α � 0.1, X̂ provides a reasonable
estimate of the minimum length of slope required for the flow to bulk up, while for
smaller α (large surges) the model suggests that X̂ is a considerable overestimate.
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Figure 5. Net deposit thickness η(x) for (a) the erosion model (3.5) with m= 3 (solid lines)
and m= 2 (dashed lines) and with uc = 0 (most scour) and uc = 1; and (b) the model (3.7) with
α = 10 (least scour) to 0.01 (most scour). In (b) the dotted line represents the limiting case
ηα=0(x).

3.2.3. Net scour and deposition

We now consider the patterns of net scour and deposition predicted by equation
(2.12); these will be fully valid only if the surge does not bulk up into a mudflow with
rather different erosional properties. Figure 5 shows how the pattern of net scour and
deposition alters with the parameters of the erosion models. In each case, net scour
occurs close to the source, where velocities are highest, and the eroded material is
dumped in a gradually thinning deposit downstream.

Figure 5(a) shows the pattern of net scour and deposition under the simple erosion
model (3.5). As m and uc are varied, the shape of the deposit changes, but in all cases
the length of the eroded region is between about X̂ and 2X̂. The behaviour as x → 0
is different for m =2 (for which η(x) → 0) and m =3 (for which η(x) → 1), and the
higher value of m gives slightly more erosion overall, but the maximum depth of the
scour is bounded in each case by |η̂| = D̂ (i.e. |η| = 1).

The results for the Garcia–Parker erosion model (3.7) are shown in figure 5(b). As
α is decreased, initial scour is increased and deposition is inhibited, so the upstream
scour pit becomes deeper and the deposit thins more gradually downstream. Using
the result (3.12) for the limiting case α = 0, we may obtain

ηα=0(x) = −201/3

9
x2/3Γ

(
1

3
,
27

20

x5/2

k
9/2
f

)
. (3.13)

In this limit the model predicts no net deposition downstream: the limiting maximum
depth of the scour pit is around 0.43D̂, and its spatial extent is roughly 4X̂. The
maximum thickness of the downstream deposit for any value of α is about 0.1D̂.

We note that under both erosion models |dη/dx| remains an order 1 quantity
(except very close to x = 0 for m = 2), so we are in general justified in neglecting bed
level change when calculating the hydrodynamic solution.

4. Concluding remarks
We have used a simple but asymptotically valid model to investigate how rapidly

sediment may be entrained into suspension by the flood surge which results when a
finite volume of water is released on a slope. Our model only considers the dynamics
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of the body of the flow, ignoring the details of the flow front, and is only valid
before the suspended sediment load becomes sufficient to affect the flow dynamics.
However, this provides us with necessary (though not sufficient) conditions for the
flow to bulk up through sediment entrainment. These conditions emerge essentially
from the non-dimensionalization of the governing equations: if the characteristic
concentration Ĉ is sufficient to alter the flow dynamics and the length of the slope
exceeds the characteristic length X̂, the surge may become muddy, and its subsequent
history is not predicted by our model. However, using the erosion model of Garcia &
Parker (1991) for large, rapid surges, so the parameter α is very small, X̂ becomes a
considerable overestimate for the length of slope required. In this case the hindmost
parts of the surge may become muddy well before the front does, and possibly
even during the early stages of flow before the kinematic-wave solution is valid. In
contrast to this, a traditional erosion model based on the excess shear stress predicts
that the front of the flow will become turbid faster than the tail. This difference in the
predictions of the two models suggests the key importance of constraining erosion
rates when predicting mudflow initiation, whether using our asymptotic results or any
more sophisticated method based on the same physical processes.

We have also presented results for the net erosion and deposition under these surges
for the two erosion models considered. In each case, net erosion occurs over a distance
of order X̂ from the source, while the dimensional quantity D̂ provides a reasonable
upper estimate for the maximum depth of scour: eroded material is redistributed in a
longer and thinner downstream deposit. These results may be of use when assessing
the ability of flood surges to reshape natural or artificial channels.

I am grateful to Dr Andrew J. Hogg for bringing the kinematic-wave solution to
my attention and for helpful comments on this problem. This work was supported by
postdoctoral fellowships from the Newton Trust and from NERC (NE/B50188X/1).
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